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Abstract 

We discuss advantages of using non-classical states of light for two aspects of 
optical imaging: creating of miniature images on photosensitive substrates, which 
constitutes the foundation for optical lithography, and conversely, imaging of micro 
objects. In both cases, the classical resolution limit given by the Rayleigh criterion 
is approximately a half of the optical wavelength. It has been shown, however, that 
by using multi-photon quantum states of the light field, and multi-photon sensitive 
material or detector, this limit can be surpassed. In the present work, we give a 
rigorous quantum mechanical treatment of this problem, address some particularly 
widespread misconceptions and discuss the requirements arising on the way of turning 
the research on quantum imaging into a practical technology. 

The idea that the limits of classical optical imaging can be overcome by using multi- 
photon processes is fairly well known. For example, Marlan Scully discusses in his book [l] 
a two-photon microscope scheme that would beat the width limitation of the standard 
diffraction pattern by a factor of 2/2 by making a sinc4(kz) diffraction pattern, which comes 
as a product of two classical diffraction pattern, instead of the sinc2(kz).  Such narrowing 
of a diffraction pattern can be observed by using a detector sensitive to intensity-square, 
instead of just intensity. In other words, one needs a two-photon process to observe the 
&narrowing of diffraction pattern. Moreover, using detectors based on a higher-order 
multi-photon process that are sensitive exclusively to an even higher order of intensity, one 
couldsee even narrower diffraction patterns. 

This approach would not work so well for hologra ing used in lithography. In 
this technique, the desired image is composed of interfe fringes of different spatial 
frequency, so the resolution is given by the highest spatial frequency. The spatial frequency 
is equal to the inverse of the fringe period, which cannot be shorter than one half of the 
optical wavelength. It is easy to see that this period is the same for any power of intensity, 
e.g. a sin4(/&) fringe has the same period as a sin2(kz) fringe. 

Different approaches have been suggested to obtain a shorter-period interference fringe 
of intensity-square. It has been proposed, for example, to use frequency modulation to blur 

1 



the longer spatial component of a sin4(kz) fringe, [a]. Using quantum sources of light has 
been also proposed [3] and demonstarted with electronic detection of coincidences [4]. 

Consider the setup that has been proposed for quantum interferometric lithography [3], 
see Fig.1. This is a modification of a well-known two-photon interference experiment [5,6], 
in which the single-photon detectors are removed, and the output beams are directed at a 
two-photon sensitive substrate (e.g., one covered with a lithographical photoresist) instead. 

Figure 1: Two-photon interferometer with photosensitive substrate. 

Following the standard theoretical treatment for two-photon interferometers, we write 
the two-photon amplitude-square as 

1 AI2 (Q I,ij(-),ij(-)h(+) $+) 1 Q) = I (01 h(+)h(+) I q) 12 
where the fields depend on the propagation paths, and the state IQ) is the frequency- 
entangled output state of a Spontaneous Parametric Down Converter (SPDC): 

Iq) = 1 dvh(v)iit(v)@(-v)lO). (2) 

In (a), creation operators iit and i t  refer to channels labeled I1 and 12, respectively, in Fig.1; 
v is the frequency-detuning from the central frequency wo, the later being equal to one half 
of the pump frequency wp. The spectral function h(v) gives the phase matching width and 
accounts for inexact momentum conservation due to the finite length of the crystal L: 

Derivation and analysis of expressions (2) and (3) are given in a number of publications on 
SPDC. In particular, in [7,8], it is shown that for collinear degenerate type-I SPDC 

I d l  A,(v) -D’v2, D = --I 
dwv wo’ 

and for collinear degenerate type-I1 SPDC 

1 1  
00 Ve 

A,(v) = Dv, D = - - - 7 

(4) 

(5) 

where v denotes the group velocity of the signal and idler photons. In case of orthogo- 
nal polarizations (type-11), the group velocity v has indices o and e for ”ordinary” and 
” extraordinary ” polarization components . 
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The two-photon amplitude (1) can describe coincidence detection rate, as well as the 
two-photon absorption rate, as a function of pathlengths 11,2 and x1,2. In the coincidence 
detection case, the fields in (1) are evaluated at two distinct locations of two detectors, while 
in the two-photon absorption case they are evaluated at the same, although arbitrary, point 
on the photosensitive substrate. A geometrical size of the "point" in this context may be 
equal to the size of photo emulsion grain, or of the photoresist molecule. Let us assume 
that this size is much smaller than the interference structure we are expecting to see. Then 
we can safely speak of a zero-size point. As a further simplification, we will consider a one- 
dimensional problem with exactly counterpropagating beams. This geometry is obviously 
not practical, since no light energy is delivered to the surface, andwe study this case just 
as an illustration allowing us to simplify the treatment. 

As a next step, we need to represent the fields in (1) in terms of the same operators 
that describe the two-photon wavefunction (2). For perfectly monochromatic plane waves 
with a wave vector k = w,-,/c, the connection is given by propagating the operators through 
the interferometer: 

In equation (6), we put the proportionality constant between the field operator and the 
annihilation operator equal to unity. Also, we assume that the fields in the arms ZI and 12 

have the same polarization. It is easy to see that otherwise there will be no two-photon 
interference fringes on the photosensitive substrate. 

(4 t 

X 
U 

Figure 2: Different two-photon paths contributing to the amplitude (1): (a) both photons 
are transmitted; (b) both reflected; (c) transmitted - reflected; (d) reflected - transmitted. 

The plane wave approximation implies that in the wave function (a) ,  h(v) should be 
replaced by S(v). Then substituting (6) and (2) into (1) it is easy to notice that the terms 
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with ii2 and b2 drop out, which is consistent with only one photon present in each channel. 
The other four terms can be represented by four paths shown in Fig.2. These paths corre- 
spond to both photons being transmitted by the beamsplitter (a), both reflected by it (b), 
one transmitted, the other reflected (c), and vise versa (d). If we have a 50-50 beamsplitter, 
all four amplitudes are equally weighted. Notice that, in the usual coincidence-detection 
treatment of two-photon interference, the amplitudes corresponding to paths (c) and (d) 
are discarded simply because they do not result in a pair of coincident detections. There- 
fore one cannot directly apply the results well known for a two-detectors experiment to 
our system, and then argue that ”detectors are placed at the same point”, since at that 
point the amplitudes (c) and (d) are already discarded. Let us now show that these are 
the amplitudes that give rise to two-photon interference. 

In the following, we will consider a more realistic case of wavepackets rather than plane 
waves. The fields will be allowed to have a finite frequency bandwidth, described by a real 
and even function f ( v ) ,  around the central frequency wo: 

E = /dvf(v) (7)  

Then the two-photon amplitude (1) takes on the following form: 

A = / ~ , d ~ 1 ~ ~ 2 h ( ~ ) f ( ~ i ) f ( ~ 2 )  
{ e i k ( r ) l l  e8’k(wYz ( , ik(” l )h  + ieik((”)“l) (eak(”z)zl + i e i k ( ” Z b 2 ) }  (8) 
(0 I&( v1) i( v2)iit (v)i+( -v) IO}. 

The inner product in (8) is equal to S(v1- v)S(v, + v) which reduces (8) to a single integral. 
To handle it, we expand E(v) = ko + v /c ,  where ko E L(w0). This allows us to arrive at, 

A = eik0(’+”) [u(AZ + Ax) - u(AZ - Ax) - 2sin(2koAx)u(AZ)], (9) 

where u ( z )  is given by a Fourier transformation of a combined spectral density, and therefore 
has a meaning of a correlation function: 

In (lo),  x 

type-I1 (5) SPDC u ( z )  is always a real and even function: 

x2 +- xl, Ax = x2 - 21, Z = Z2 + I1 and AZ = Z2 - ZI have been introduced. 
Analyzing the symmetry properties of h(v), we find that in both cases of type-I (4) and 

u ( z )  = u(-2) = u*(z) = u*(-z). 

Therefore the first two terms in (9) cancel each other when AZ = 0. Taking the absolute 
square of the remaining term, we get 
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[AI2 = 4u2(0) sin2(2EoAx). (12) 

We see from (12) that the two-photon absorption amplitude is a harmonic function of 
coordinate Ax measured along the photosensitive substrate, that has a spatial frequency 



4k0, which is twice the spatial frequency of the ”usual”, second-order interference fringes. 
The two-photon interference fringes (12) appear to have a perfect contrast for all Ax. This 
is a consequence of a plane wave approximation for  the pump. If one considers the pump 
with a finite bandwidth, the exponential pre-factor in (9) will no longer be just a phase 
factor, but will turn into an envelope, equivalent to the pump envelope. Therefore the two- 
photon interference fringes (12) will have a coherence length equal to the pump coherence 
length, which may be quite long and reach meters for CW lasers. 

It is very important that the two-photon coherence length does not depend on the 
fields bandwidth given by f (v) ,  nor on the phase matching width given by h(v) .  Why 
this happens is obvious from the physical consequences of the condition AZ = 0. It has 
been shown [5,6], that in this case the two-photon amplitudes represented in Fig2 by 
diagrams (a) and (b) exactly cancel each other, and the photon pair always goes to one 
channel (either x1 or x2), realizing diagrams ( c )  or (d). In other words [3], the beamsplitter 
produces an entangled la},, lo},, - lo},, l2),, state, which picks up the spatial phase at the 
same rate as the pump phot uld. It also dephases at same slow rate as the pump 
photon does due to its finite bandwidth, which results in two-photon coherence lenght 
of the SPDC light being equal to the pump (single-photon) coherence length. 

nterference in our ap s. This study is important, 
since the modulations of in will directly affect t It (12) for two-photon ab- 
sorption rate. For example will be no two-phot rption in the nodes of the 
single-photon interference fringe. 

Now let us consider the li 

The expression for intensity is 

where the state IS) is given by (2) and the field is given by (7). Setting I1 = 12 and treating 
this expression the same way we have treated the forth-order field momenta, we arrive to 

I = 1 - cos(k&x) dvlh(v)12f2(v) S 
Notice that the integrand in (14) is an odd function, a hence the whole integral is 
zero, and the expression (14 als unity. This means that in our apparatus there will 
be no intensity modulations o the second-order interference, regardless of individual 
coherence length of the signal and idler photons. This at first appears surprising, since 
one might expect to see at least a few interference fringes at the ”white light interference” 
condition x1 = 22. However, taking into account that both inputs of the beamspliter are 
used, we realize that we actually have two sets of interference fringes exactly out of phase 
with each other, and hence the total intensity is unmodulated. 

Two more issues associated with two-photon quantum imaging need to be addressed to 
make it a practically useful technology. One is availability of two-photon sensitive photore- 
sists and detectors, and the other has to do with the fact that using SPDC as a two-photon 
source, one first loses a factor of two in spatial resolution by down converting the pump 
frequency (and hence doubling the wavelength), and then ins this factor by using two- 
photon processes. Therefore in terms of spatial resolut uantum imaging technique 
has no advantage over using classical imaging at the pu length. The counter ar- 
gument [9] is that it is not always possible to use the UV light. For example, it may be 
incompatible with imaging biological or other light sensitive objects. Another example is 



3D lithography [9]: creating 3D structures with single-photon exposure of photolithograph- 
ical materials is very difficult since they strongly absorb UV light which limits the depth of 
penetration. Two-photon exposures solve this problem. However, much of the value would 
be added to quantum imaging technology if one could prepare two-photon states without 
doubling the wavelength. One way to achieve it is to use a Hyper Parametric Scattering 
(HPS) instead of SPDC. 

HPS is a nonlinear optical process occurring via the cubical optical nonlinearity ~ ( ~ 1 ,  in 
which two pump photons recombine into an entangled photon pair. This process is similar 
to four wave mixing in the same sense as SPDC is similar to'parametric Amplification: four 
wave mixing and PA assume non-vacuum input into the signal and/or the idler modes. HPS 
is distinct from the SPDC where a single pump photon produces an entangled pair. This 
distinction is the most evident from comparing the phase matching conditions for SPDC: 

with those for HPS: 
-+ - + - +  

2kp,= k, + ki, 2wp = w, i- w; 

which is illustrated graphically in Fig.3. An important thing to notice in Fig3 is that the 
average wavelength of the photons produced in HPS is the same as that of the pump, while 
in the case of SPDC it doubles. 

4 b) 

Figure 3: The phase matching (momentum and energy conservation) diagrams for SPDC 
(a) and HPS (b). 

For the first time, HPS was observed over 30 year ago [lo]. At that time, it did not 
attract the due attention as a source of EPR-states because of a very low efficiency of the 
x ( ~ )  processes compared to x ( ~ )  processes. A typical value for ~ ( ~ 1  is loF8 [CGS units of 
electric field]-', while for x ( ~ )  it is [CGS units of field]-2. Fortunately, HPS output 
power is quadratic with respect to the pump intensity, while in case of SPDC it is only 
linear, so comparing efficiencies of the two processes, one compares the squares of E,x(~) 
and ~ ( ~ 1 .  Modern powerful femtosecond lasers, that were not yet available in the early days 
of the HPS discovery, dramatically changed the situation in favor of HPS. 

Another argument in favor of HPS is that unlike SPDC, this process does not require 
any particular symmetry of the media, and can be observed not only in crystals but also 
in glass fibers 1111, which promises to increase the interaction length to meters, or beyond. 
Furthermore, it has been shown [12] that about a four orders of magnitude improvement of 

6 



the signal can be achieved by cascading two x ( ~ )  processes to  emulate a x ( ~ )  HPS process. 
Large amount of other research has been done on x ( ~ )  processes, and particularly on four 
wave mixing, e.g. [ll, 13-15], and we plan to rely on these results in our new research 
program directed at creating a robust source of entangled photon pairs or two-photon 
states without down converting the light frequency. 

The second practical issue we have mentioned above is availability of two-photon sen- 
sitive photoresists. Considering very low power of two-photon sources, high two-photon 
sensitivity of the photoresists is required. Unfortun ly, high single-photon UV sensi- 
tivity of many commercially available photoresists does not guaranty that they would be 
suitable two-photon sensitive materials. Synthesizing of such a material appears to be a 
difficult task, although a large volume of research has been done in this area, e.g. [9,16,17], 
motivated by the growing recognition of the two-photon imaging technology importance. 

y quick search for two-photon sensitive lithographic 
materials. Relying on analogy ic systems, we expect that a suitable two-photon 
material would have an inter el corresponding to the single photon energy, so 
that the single-photon detuning that inversely factors in the two-photon absorption cross 
section be small, and the tw n absorption rate be peaked. It is furthermore required 
that the molecular transiti ponding to the intermediate absorption level does not 
result in the photochemic initiating the phototresist (otherwise the resist would 
be one-photon sensitive); that the intermediate level or band is normally depopulated and 
very short-lived (otherwise the resist would be one-photon sensitive via cascaded processes); 
and that both transitions have the right selection rules. 

We have taken absorption spectra of various commercially available photoresists. The 
results are shown in Fig.4. One of our samples, the ac 5740, has shown a local 
absorption maximum which is c s clearly separated from the 
strong transition in the UV part spectra, associated with the photochemical reaction 
initiating the photoresist. We s pproximately 15 pm-thick sample of this photoresist 
on a gold plated substrate and the sample to  different doses of the Argon Ion laser 
light, whose wavelength (514.5 nm) was close to the center of the absorption peak of interest. 
We found the threshold dose of about 2 kJ/cm2, assuming 100% radiation reflection off the 
mirror substrate and oper ’. Repeating the experiment 
at 25 W/cm2, we obtained horter exposition time, which 
suggests that the exposu ence is a single-photon one. 
Notice that the threshold we found at 514.5 nm is roughly five orders of magnitude higher 
then for a regular UV exposure. 

Next, we repeated the expositions for another Argon laser line with the 457.9 nm 
wavelength, which is off the intermediate absorption peak s closer to the UV absorption 
transition. We found that at this wavelength the threshold dose was definitely lower than 
0.4 kJ/cm2. This suggests that igh-threshold phototinitiation observed at 514.5 nm, 
as well as at 457.9 nm, is no o the intermediate absorption peak, but rather is due 
to a far off-resonant absorption ing of the UV a g transition. Therefore, the 
selected material may satis e-outlined require r a two-photon optimized 
photoresist, and it would g to try exposing a two-photon source. We 
plan on carrying out such n the nearest future. 

In conclusion, we have carried out a rigorous analysis that confirmed the results [3]. In 
addition, our analysis have shown that the desired two-photon interference fringe will have 

We also have carried out a pr 

d at about 520 

the intensity level of 
me results with five 
s is linear in intens 
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Figure 4: Absorption spectra for different photoresists. The sample of the choice shows an 
absorption maximum centered at about 520 nm. Arrows mark the wavelengths the sample 
was exposed at: 457.9 nm and 514.5 nm. 

a very long coherence length, equal to that of the pump, and that the second-order (single- 
photon) interference fringes will be entirely absent. The questions related to alternative 
sources of two-photon states and to the choice of two-photon sensitive photolithographical 
materials have been discussed. Although bringing the research in this area to the level 
of practical technology is a challenging task, it is at the same time is an interesting and 
potentially rewarding one. 

We thank Victor White (JPL) for valuable help with photoresists. 
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